
Fully Distributed Multi-Robot 
Simultaneous Localization and Mapping

Alex Cunningham and Frank Dellaert
Center for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta GA, 30332

Figure 5. Full trajectories and global landmarks with 3 
robots in Freiburg dataset for run 1 (top) and run 2.

Abstract
Multi-robot SLAM systems are necessary to 
coordinate teams of robots by producing 
consistent, reliable maps of the environment. 
One challenge in a multi-robot system not 
present in single robot SLAM is finding 
globally consistent labels for landmarks 
observed by separate robots when the starting 
reference frames of the robots are not known. 
We present a novel, RANSAC-based, 
approach for performing the between-robot 
data associations and initialization of relative 
frames of reference, obtaining an end-to-end 
multi-robot SLAM system,  when combined 
with our previous DDF-SAM approach, for 
which have only shown simulated result until 
now.

Figure 2. Two robots with globally consistent landmarks (black circles), showing corrected trajectories (green and blue 
lines) and landmark observations (translucent lines), shown after aligning landmarks and global optimization.
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Overview
The primary requirements for multi-robot 
mapping system useful in harsh 
environments, which performs Decentralized 
Data Fusion (DDF), are as follows:

● Scalable in computational cost
● Scalable in communication bandwidth as 

the number of robots increases
● Robust to node failure
● Robust to changes in network topology

Figure 3. Map matching via triangulations of feature maps.  
Left: two sets of landmarks, their triangulations, and 
correspondences.  Right: matched maps overlaid.  

Figure 4. Robots used for experiment and example 
pole feature (left) and aerial view of the parking lot 
used in Freiburg.  

Figure 1. An example scenario with two robots driving 
through an environment with landmarks (stars).  

DDF-SAM
The DDF-SAM system, introduced in [1] and 
expanded in [2], consists of three main 
modules:

1) Local Mapping Module: Performs full 
nonlinear SAM to solve for the full 
trajectory and landmark map, then 
compresses the local map to broadcast to 
neighboring robots.

2) Communications Module: Updates a 
cache of compressed maps from many 
robots with correspondences and 
initializations and computes multi-robot 
data associations.

3) Global Mapping Module: Optimizes 
graph over all known neighbors and yields 
a global feature map.

Local Smoothing and Mapping (SAM) solves 
nonlinear least-squares optimization problem, 
while global optimization introduces hard 
equality constraints to bind landmarks in 
different reference frames together.

Experiments
We tested the system in the following 
scenario

● Three robots (shown in Fig. 4) 
equipped with laser scanners

● Parking lot environment with pole 
features added

● Two runs through the environment, 
manually controlled by human

All results were computed off-line for 
visualization, using the GTSAM graphical 
inference library for optimization. Full 
map outputs can be seen in Fig. 5, with a 
closeup of a two-robot case in Fig. 2. 

Conclusions
● Decentralized multi-robot maps are feasible 
with real-time performance

●  We can assemble a global map even when 
the initial positions of the robots are 
unknown

● The system scales with the number of 
robots while producing accurate maps, as in 
Fig. 2 and Fig. 5

Map Matching
● Rather than matching landmarks directly, we 

compute features on the landmarks
● We compute Delaunay triangulations (shown 

in Fig. 3) over the landmarks in a map
●  Correspondences between the triangles will 

be more robust to noise
● We use these triangle correspondences as 

inputs to a RANSAC algorithm to find data 
associations and relative reference frames


